BC Calc Vector 3

Seat:

Block:

Key 2021 1. (NC) The position of a particle at any time $t \ge 0$ is given by $x(t) = t^2 - 2$, $y(t) = \frac{2}{3}t^3$. (a) Find the magnitude of the velocity vector at t = 2.

$$\frac{dx}{dt} = 2t \qquad \vec{y}(t) = \langle 2t, 2t^2 \rangle$$

$$\frac{dy}{dt} = 2t^2 \qquad ||\vec{v}(2)|| = ||\langle 4, 8\rangle||$$

$$= \langle 4^2 + 8^2 \rangle = 4\sqrt{5}$$

(b) Set up an integral expression to find the total distance traveled by the particle from t = 0 to t = 4.

$$\int_{0}^{4} \int \frac{4t^{2} + 4t^{4}}{4t^{2} + 4t^{4}} dt \qquad \approx 46.061$$

$$46.062$$

(c) Find
$$\frac{dy}{dx}$$
 as a function of x .

$$\int_{\mathcal{A}} = \frac{dy}{dx} = \frac{2t^2}{2t} = t$$

(d) At what time t is the particle on the y-axis? Find the acceleration vector at this time.

when vert. comp. is
$$0 | \vec{v}(t) = \sqrt{2t}, 2t^2 \rangle$$

 $\frac{2}{3}t^3 = 0 | \vec{i}(0) = \langle 0, 0 \rangle$
 $\vec{a}(t) = \langle 2, 4t \rangle$
 $\vec{a}(0) = \langle 2, 0 \rangle$

- 2. (NC) An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with the velocity vector $v(t) = \langle (t+1)^{-1}, 2t \rangle$. At time t = 1, the object is at $(\ln 2, 4)$.
 - (a) Find the position vector.

$$\frac{1}{S}(t) = \int \left\{ \frac{1}{t+1}, 2t \right\} dt$$

$$= \left\{ \ln \left| t+1 \right| + C_{1}, t^{2} + C_{2} \right\}$$
Now
$$\ln \left(|t+1| \right) + C_{1} = \ln 2$$

$$\frac{39}{t+C_{2}} = 4 \quad 40 \quad C_{2} = 2$$
(b) Write an equation for the line tangent to the curve when $t = 1$.
$$\frac{1}{4k} = \frac{2t}{\frac{1}{t+1}} = 2t \quad (t+1) \Big|_{t=1} = 4$$

$$\frac{1}{9} = 4 \times t + 4 - \ln 16$$

(c) Write an equation for the line tangent to the curve when
$$t = 1$$
.
What is the speed, $\int \left(\frac{1}{2}\right)^{n} + 2^{n} = \int_{A}^{A} = \frac{17}{2}$
How much has it travelled in the first second?
 $\int_{B}^{A} \sqrt{\left(\frac{1}{4}+1\right)^{n}} + (at)^{n} dt$

(d) At what time $t \ge 0$ does the line tangent to the particle at (x(t), y(t)) have a slope of 12?

$$2 + (t + 1) \ge 12$$

$$t^{2} + t - 6 \ge 0$$

$$(t + 3)(t - 2) \ge 0$$

$$t = -3 \quad \text{or} \quad t = 2$$
both work (if you remembered the obs. value !)

St. Francis High School

3. (Calc OK) A particle moving along a curve in the xy-plane has position (x(t), y(t)), with $x(t) = 2t + 3 \sin t$ and $y(t) = t^2 + 2 \cos t$, where $0 \le t \le 10$. Find the velocity vector at the time when the particle's vertical position is y = 7.

$$\vec{v}(4) = \langle 2 + 3 \cos t, 2t - 2 \sin t \rangle$$
Find t shen $y = 7$
 $4^2 + 2 \cos t = 7$
 $A = t = 2.996t952 (don't rowd get!)$
 $store it!)$
 $\vec{v}(A) \approx \langle -0.968, 5,703 \rangle$
 $\omega < -0.968, 5.7047$

4. (Calc OK) A particle moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dx}{dt} = 1 + \sin(t^3)$. The derivative $\frac{dy}{dt}$ is not explicitly given. For any time $t, t \ge 0$, the line tangent to the curve at (x(t), y(t)) has a slope of t + 3. Find the acceleration vector of the object at time t = 2.

Since
$$\frac{dn}{dx} = \frac{dn/dt}{dx/dy}$$
, $\frac{dy}{dt} = \frac{dn}{dx} \cdot \frac{dx}{dy} = (++s)(1+sint^3)$
 $\frac{dx^2}{dt^2} = 3t^2\cos t^3$
 $\frac{dn^2}{dt^2} = (++3)(3t^2\cos t^3) + (1+\sin t^3)$
 $\frac{dn^2}{dt^2} = (-1,7+6) - (-6,7+6) - (-1,7+6) - (-1,7$

St. Francis High School

 $\operatorname{Calc}\,\operatorname{BC}$

Page 4 of 6
(Cake not really needed for most of this) 2017
5. An object moving along a curve in the *xy*-plane has position
$$(x(t), y(t))$$
 at time t with $\frac{dx}{dy} = \cos(e^t)$ and
 $\frac{dy}{dt} = \sin(e^t)$ for $0 \le t \le 2$. At time $t = 1$, the object is at the point (3, 2).
(a) Find the equation of the tangent line to the curve at the point where $t = 1$.

$$\frac{dy}{dxd} = \frac{\sin e'}{\cos e'} = \tan e$$

$$y - 2 = \tan e (x - 3)$$

$$e = 0.45a5(x - 3) + 2$$

(b) Find the speed of the object at t = 1.

$$\sqrt{\left(\cos e^{t}\right)^{2} + \left(\sin e^{t}\right)^{2}} = \sqrt{\cos^{2}e + \sin^{2}e} = \left| t = 1 \right|$$

(c) Find the total distance traveled by the object over the time interval $0 \le t \le 2$.

$$\int_{0}^{2} \sqrt{\cos^{2} e^{t} + \sin e^{t}} dt = \int_{0}^{2} dt$$
$$= t \Big|_{0}^{2} = 2 - 0 = 2$$

(d) Find the position of the object at time t = 2.

$$x = 3 + \int_{1}^{2} \cos e^{t} Jt \approx 2.8957$$

$$y = 2 + \int_{1}^{2} \sin e^{t} Jt \approx 1.6759$$

$$(2.595, 1.675) = (2.896, 1.676)$$

6. A particle moving along a curve in the *xy*-plane has position (x(t), y(t)) at time *t* with $\frac{dx}{dt} = \sin(t^3 - t)$ and $\frac{dy}{dt} = \cos(t^3 - t)$. At time *t* = 3, the particle is at the point (1, 4). (a) Find the acceleration vector for the particle at *t* = 3. $\vec{a}(t) = \langle (3t^2 - 1)\cos(t^3 - t), -(3t^2 - 1)\sin(t^3 - t) \rangle$ $\vec{a}(3) = \langle 26\cos 2t, -26\sin 24 \rangle$ $\vec{a}(3) = \langle 26\cos 2t, -26\sin 24 \rangle$ $\vec{a}(3) = \langle 11.028, 23.545 \rangle \text{or} \langle 11.029, 23.545 \rangle$

(b) Find the equation of the tangent line to the curve at the point where t = 3.

$$\frac{du}{dx} = \frac{\cos (t^{2} - t)}{\sin (t^{2} - t)} \bigg|_{t=3} = \frac{\cos 2i}{\sin 2i} = \cos t 26 \approx 0.84835$$

$$y = \cos t 26 (x - 1)t4$$

(c) Find the magnitude of the velocity vector at t = 3.

$$\left\| \vec{v}(3) \right\| = \sqrt{\sin^2(2b) + \cos^2(2b)} = 1$$

(d) Find the position of the particle at time t = 2.

$$\chi = | + \int_{3}^{2} \sin(t^{3}-t) dt \approx 0,932$$

$$y = 4 + \int_{3}^{2} \cos(t^{3}-t) dt \approx 4.002$$

- 7. An object moving along a curve in the xy-plane has position (x(t), y(t)) at time t with $\frac{dy}{dt} = 2 + \sin(e^t)$. The derivative $\frac{dx}{dt}$ is not explicitly given. At t = 3, the object is at the point (4,5).
 - (a) Find the y-coordinate of the position at time t = 1.

$$y = 5 + \int_{3}^{2} 2 + \sin(e^{t}) dt \approx 1.268 \text{ or}$$

1.269

Type ? (b) At time
$$t = 3$$
, the value of $\frac{dy}{dt}$ is -1.8. Find the value of $\frac{dx}{dt}$ when $t = 3$.
Since $\frac{du}{dx} = \frac{du'/dt}{dx'/dt}$, $\frac{dx}{dt} = \frac{du}{dt} \cdot \frac{dx}{dt} = (2 + \sin(e^+))(\frac{5}{9})$
 $\frac{dx}{dt}\Big|_{t=3} = -\frac{10}{9} - \frac{5}{9} \sin(e^3) \approx -1.635$

(c) Find the speed of the object at time t = 3.

$$\sqrt{\left(\frac{dx}{at}\right)^2 + \left(\frac{ty}{tt}\right)^2} \approx 3.368$$